

 LLM DB

 v2026.2.0

 Table of contents

 	LLM DB - A LLM Model Metadata Database

 	Changelog

 	Guides

 	Model Spec Formats

 	Pricing and Billing

 	Schema System

 	Sources and Engine

 	Runtime Filters

 	Using the Data

 	Release Process

 	
 Modules

 	LLMDB

 	LLMDB.Application

 	LLMDB.Config

 	LLMDB.DeepMergeShim

 	LLMDB.Engine

 	LLMDB.Enrich

 	LLMDB.Generated.ValidModalities

 	LLMDB.Generated.ValidProviders

 	LLMDB.Loader

 	LLMDB.Merge

 	LLMDB.Model

 	LLMDB.Normalize

 	LLMDB.Packaged

 	LLMDB.Pricing

 	LLMDB.Provider

 	LLMDB.Query

 	LLMDB.Runtime

 	LLMDB.Source

 	LLMDB.Sources.Anthropic

 	LLMDB.Sources.Google

 	LLMDB.Sources.Local

 	LLMDB.Sources.ModelsDev

 	LLMDB.Sources.OpenAI

 	LLMDB.Sources.OpenRouter

 	LLMDB.Sources.XAI

 	LLMDB.Sources.Zenmux

 	LLMDB.Spec

 	LLMDB.Store

 	LLMDB.Validate

 	
 Mix Tasks

 	mix llm_db.build

 	mix llm_db.models

 	mix llm_db.pull

 	mix llm_db.version

LLMDB

Fast, persistent_term-backed LLM model metadata catalog.
Provides a simple, capability-aware API for querying LLM model metadata.
All queries are backed by :persistent_term for O(1), lock-free access.
Model Specs
Model specifications can be expressed in multiple formats:
	"provider:model" (e.g., "openai:gpt-4o-mini") - Traditional colon format
	"model@provider" (e.g., "gpt-4o-mini@openai") - Filesystem-safe @ format
	{:provider, "model"} (e.g., {:openai, "gpt-4o-mini"}) - Tuple format

See the Model Spec Formats guide for detailed information
on when to use each format.
Two Phases
Phase 1 - Build Time (Mix tasks):
	mix llm_db.pull - Pull sources and run ETL pipeline to generate snapshot.json
	This is a development/CI operation that builds the complete catalog

Phase 2 - Runtime (Consumer library):
	load/1 - Load packaged snapshot into Store with optional filtering
	Query functions to select models by capabilities
	All queries operate on the filtered catalog loaded in Store

Providers
	providers/0 - Get all providers as list of Provider structs
	provider/1 - Get a specific provider by ID

Models
	models/0 - Get all models as list of Model structs
	models/1 - Get all models for a provider
	model/1 - Parse "provider:model" spec and get model
	model/2 - Get a specific model by provider and ID

Selection and Policy
	select/1 - Select first model matching capability requirements
	candidates/1 - Get all models matching capability requirements
	allowed?/1 - Check if a model is in the filtered catalog
	capabilities/1 - Get capabilities map for a model

Utilities
	parse/1,2 - Parse a model spec string (colon or @ format) into {provider, model_id} tuple
	parse!/1,2 - Parse a model spec string, raising on error
	format/1,2 - Format a {provider, model_id} tuple as a string
	build/1,2 - Build a spec string from various inputs, converting between formats

Examples
Get all providers
providers = LLMDB.providers()

Get a specific provider
{:ok, provider} = LLMDB.provider(:openai)

Get all models for a provider
models = LLMDB.models(:openai)

Get a specific model
{:ok, model} = LLMDB.model(:openai, "gpt-4o-mini")

Parse spec and get model
{:ok, model} = LLMDB.model("openai:gpt-4o-mini")

Select a model matching requirements
{:ok, {:openai, "gpt-4o-mini"}} = LLMDB.select(
 require: [chat: true, tools: true, json_native: true],
 prefer: [:openai, :anthropic]
)

Check if a model is allowed
true = LLMDB.allowed?({:openai, "gpt-4o-mini"})

 Summary

 Types

 model_id()

 model_spec()

 provider()

 Functions

 allowed?(spec)

 Returns true if the model is allowed by current filters.

 build(input, opts \\ [])

 Builds a model specification string from various inputs.

 candidates()

 Returns all models matching capability requirements.

 candidates(opts)

 See LLMDB.Query.candidates/1.

 capabilities(spec)

 Gets capabilities for a model spec.

 format(spec, format \\ nil)

 Formats a model spec tuple as a string.

 load(opts \\ [])

 Loads or reloads the LLM model catalog.

 load_empty(opts \\ [])

 Loads an empty catalog with no providers or models.

 model(spec)

 Parses model spec string and returns the model.

 model(provider, model_id)

 Returns a specific model by provider and ID (filtered).

 models()

 Returns all models across all providers (filtered).

 models(provider)

 Returns all models for a specific provider (filtered).

 parse(spec, opts \\ [])

 Parses a model spec string into a {provider, model_id} tuple.

 parse!(spec, opts \\ [])

 Parses a model spec string, raising on error.

 provider(provider)

 Returns a specific provider by ID.

 providers()

 Returns all providers as a list of Provider structs.

 select()

 Selects the first model matching capability requirements.

 select(opts)

 See LLMDB.Query.select/1.

 Types

 model_id()

 @type model_id() :: String.t()

 model_spec()

 @type model_spec() :: {provider(), model_id()} | String.t() | LLMDB.Model.t()

 provider()

 @type provider() :: atom()

 Functions

 allowed?(spec)

 @spec allowed?(model_spec()) :: boolean()

Returns true if the model is allowed by current filters.
Checks if the model is present in the filtered snapshot loaded in Store.
Parameters
	spec - Either %Model{}, {provider, model_id} tuple, or "provider:model" string

Returns
true if model is in filtered catalog, false otherwise
Examples
true = LLMDB.allowed?({:openai, "gpt-4o-mini"})
true = LLMDB.allowed?("openai:gpt-4o-mini")

{:ok, model} = LLMDB.model(:openai, "gpt-4o-mini")
true = LLMDB.allowed?(model)

 build(input, opts \\ [])

 @spec build(
 String.t() | {provider(), model_id()},
 keyword()
) :: String.t()

Builds a model specification string from various inputs.
Accepts strings (in any supported format) or tuples and outputs a string
in the desired format. Useful for converting between formats.
Parameters
	input - Model spec as string or tuple
	opts - Keyword list with optional :format for output format

Examples
"gpt-4@openai" = LLMDB.build("openai:gpt-4", format: :filename_safe)
"openai:gpt-4" = LLMDB.build("gpt-4@openai", format: :provider_colon_model)
"gpt-4@openai" = LLMDB.build({:openai, "gpt-4"}, format: :model_at_provider)

 candidates()

Returns all models matching capability requirements.
Delegates to LLMDB.Query.candidates/1.
Options
	:require - Keyword list of required capabilities
	:forbid - Keyword list of forbidden capabilities
	:prefer - List of provider atoms in preference order
	:scope - Either :all (default) or a specific provider atom

Returns
List of {provider, model_id} tuples matching the criteria.
Examples
candidates = LLMDB.candidates(
 require: [chat: true, tools: true],
 prefer: [:openai, :anthropic]
)

 candidates(opts)

 @spec candidates(keyword()) :: [{provider(), model_id()}]

See LLMDB.Query.candidates/1.

 capabilities(spec)

 @spec capabilities(model_spec()) :: map() | nil

Gets capabilities for a model spec.
Delegates to LLMDB.Query.capabilities/1.
Parameters
	spec - Either {provider, model_id} tuple, "provider:model" string, or %Model{} struct

Examples
caps = LLMDB.capabilities({:openai, "gpt-4o-mini"})
#=> %{chat: true, tools: %{enabled: true, ...}, ...}

 format(spec, format \\ nil)

 @spec format(
 {provider(), model_id()},
 atom() | nil
) :: String.t()

Formats a model spec tuple as a string.
Converts a {provider, model_id} tuple to string format. The output format can be
controlled via the format parameter or falls back to the application config
:llm_db, :model_spec_format (default: :provider_colon_model).
Parameters
	spec - {provider, model_id} tuple
	format - Optional format override (atom)

Supported Formats
	:provider_colon_model - "provider:model" (default)
	:model_at_provider - "model@provider" (filename-safe)
	:filename_safe - alias for :model_at_provider

Examples
"openai:gpt-4o-mini" = LLMDB.format({:openai, "gpt-4o-mini"})
"gpt-4o-mini@openai" = LLMDB.format({:openai, "gpt-4o-mini"}, :filename_safe)
"gpt-4o-mini@openai" = LLMDB.format({:openai, "gpt-4o-mini"}, :model_at_provider)

 load(opts \\ [])

 @spec load(keyword()) :: {:ok, map()} | {:error, term()}

Loads or reloads the LLM model catalog.
Phase 2 operation: Loads the packaged snapshot into runtime Store with
optional filtering and customization based on consumer configuration.
This function is idempotent - calling it multiple times with the same
configuration will not reload the catalog unnecessarily.
Options
Consumer configuration options (override config :llm_db, ... settings):
	:allow - :all, list of providers [:openai], or map %{openai: :all | [patterns]}

	:deny - List of providers [:provider] or map %{provider: [patterns]}
	:prefer - List of provider atoms in preference order
	:custom - Map with provider IDs as keys, provider configs (with models) as values

Returns
	{:ok, snapshot} - Successfully loaded the catalog
	{:error, :no_snapshot} - No packaged snapshot available
	{:error, term} - Other loading errors

Examples
Load with default configuration from app env
{:ok, _snapshot} = LLMDB.load()

Load with provider filter
{:ok, _snapshot} = LLMDB.load(allow: [:openai, :anthropic])

Load with model pattern filters
{:ok, _snapshot} = LLMDB.load(
 allow: %{openai: ["gpt-4*"], anthropic: :all},
 deny: %{openai: ["gpt-4-0613"]},
 prefer: [:anthropic, :openai]
)

Load with custom providers/models
{:ok, _snapshot} = LLMDB.load(
 custom: %{
 local: [
 name: "Local Provider",
 base_url: "http://localhost:8080",
 models: %{
 "llama-3" => %{capabilities: %{chat: true}},
 "mistral-7b" => %{capabilities: %{chat: true, tools: %{enabled: true}}}
 }
]
 }
)

 load_empty(opts \\ [])

 @spec load_empty(keyword()) :: {:ok, map()}

Loads an empty catalog with no providers or models.
Used as a fallback when no packaged snapshot is available,
allowing the application to start successfully. The catalog can
later be populated via load/1 once a snapshot is available.
Examples
LLMDB.load_empty()
#=> {:ok, %{providers: [], models: %{}, ...}}

 model(spec)

 @spec model(String.t()) :: {:ok, LLMDB.Model.t()} | {:error, term()}

Parses model spec string and returns the model.
Supports both "provider:model" and "model@provider" formats.
Parameters
	spec - Model spec string like "openai:gpt-4o-mini" or "gpt-4o-mini@openai"

Returns
	{:ok, model} - Model found
	{:error, term} - Parse error or model not found

Examples
{:ok, model} = LLMDB.model("openai:gpt-4o-mini")
{:ok, model} = LLMDB.model("gpt-4o-mini@openai")
{:ok, model} = LLMDB.model("anthropic:claude-3-5-sonnet-20241022")

 model(provider, model_id)

 @spec model(provider(), model_id()) :: {:ok, LLMDB.Model.t()} | {:error, term()}

Returns a specific model by provider and ID (filtered).
Parameters
	provider - Provider atom (e.g., :openai)
	model_id - Model ID string (e.g., "gpt-4o-mini")

Returns
	{:ok, model} - Model found
	{:error, term} - Model not found

Examples
{:ok, model} = LLMDB.model(:openai, "gpt-4o-mini")

 models()

 @spec models() :: [LLMDB.Model.t()]

Returns all models across all providers (filtered).
Examples
models = LLMDB.models()
#=> [%LLMDB.Model{}, ...]

 models(provider)

 @spec models(provider()) :: [LLMDB.Model.t()]

Returns all models for a specific provider (filtered).
Parameters
	provider - Provider atom (e.g., :openai, :anthropic)

Returns
List of Model structs for the provider, or empty list if provider not found.
Examples
models = LLMDB.models(:openai)
#=> [%LLMDB.Model{id: "gpt-4o", ...}, ...]

 parse(spec, opts \\ [])

 @spec parse(
 String.t() | {provider(), model_id()},
 keyword()
) :: {:ok, {provider(), model_id()}} | {:error, term()}

Parses a model spec string into a {provider, model_id} tuple.
Supports both "provider:model" (default) and "model@provider" (filename-safe) formats.
Automatically detects the format based on separator present.
Parameters
	spec - String like "openai:gpt-4o-mini", "gpt-4o-mini@openai", or tuple {:openai, "gpt-4o-mini"}
	opts - Keyword list with optional :format to explicitly specify :colon or :at

Returns
	{:ok, {provider, model_id}} - Successfully parsed spec
	{:error, term} - Invalid spec format

Examples
{:ok, {:openai, "gpt-4o-mini"}} = LLMDB.parse("openai:gpt-4o-mini")
{:ok, {:openai, "gpt-4o-mini"}} = LLMDB.parse("gpt-4o-mini@openai")
{:ok, {:anthropic, "claude-3-5-sonnet-20241022"}} = LLMDB.parse("anthropic:claude-3-5-sonnet-20241022")
{:ok, {:openai, "gpt-4o"}} = LLMDB.parse({:openai, "gpt-4o"})

With explicit format when ambiguous
{:ok, {:openai, "model@test"}} = LLMDB.parse("openai:model@test", format: :colon)

 parse!(spec, opts \\ [])

 @spec parse!(
 String.t() | {provider(), model_id()},
 keyword()
) :: {provider(), model_id()}

Parses a model spec string, raising on error.
Same as parse/2 but raises ArgumentError instead of returning error tuple.
Examples
{:openai, "gpt-4o-mini"} = LLMDB.parse!("openai:gpt-4o-mini")
{:openai, "gpt-4o-mini"} = LLMDB.parse!("gpt-4o-mini@openai")

 provider(provider)

 @spec provider(provider()) :: {:ok, LLMDB.Provider.t()} | {:error, term()}

Returns a specific provider by ID.
Parameters
	provider - Provider atom (e.g., :openai, :anthropic)

Returns
	{:ok, provider} - Provider found
	{:error, term} - Provider not found

Examples
{:ok, provider} = LLMDB.provider(:openai)

 providers()

 @spec providers() :: [LLMDB.Provider.t()]

Returns all providers as a list of Provider structs.
Examples
providers = LLMDB.providers()
#=> [%LLMDB.Provider{id: :anthropic, ...}, ...]

 select()

Selects the first model matching capability requirements.
Delegates to LLMDB.Query.select/1.
Options
	:require - Keyword list of required capabilities
	:forbid - Keyword list of forbidden capabilities
	:prefer - List of provider atoms in preference order
	:scope - Either :all (default) or a specific provider atom

Returns
	{:ok, {provider, model_id}} - First matching model
	{:error, :no_match} - No models match the criteria

Examples
{:ok, {provider, model_id}} = LLMDB.select(
 require: [chat: true, tools: true],
 prefer: [:openai, :anthropic]
)

 select(opts)

 @spec select(keyword()) :: {:ok, {provider(), model_id()}} | {:error, :no_match}

See LLMDB.Query.select/1.

LLMDB.Application

OTP Application for LLMDB.
Automatically loads the pre-built snapshot on application start.
The snapshot is generated by mix llm_db.build and packaged
with the release.

LLMDB.Config

Configuration reading and normalization for LLMDB.
Reads from Application environment and provides normalized config maps
and compiled filter patterns.

 Summary

 Functions

 compile_filters(allow, deny, known_providers \\ nil)

 Compiles allow/deny filter patterns to regexes for performance.

 get()

 Returns normalized configuration map from Application environment.

 sources!()

 Returns the list of sources to load, in precedence order.

 Functions

 compile_filters(allow, deny, known_providers \\ nil)

 @spec compile_filters(
 allow :: :all | map(),
 deny :: map(),
 known_providers :: [atom()] | nil
) ::
 {%{allow: :all | map(), deny: map()}, [{:unknown, [term()]}]}

Compiles allow/deny filter patterns to regexes for performance.
Parameters
	allow - :all or %{provider_atom => [pattern_strings]}
	deny - %{provider_atom => [pattern_strings]}
	known_providers - Optional list of known provider atoms for validation (defaults to all existing atoms)

Patterns support glob syntax with * wildcards via LLMDB.Merge.compile_pattern/1.
Provider keys that don't correspond to existing atoms are silently ignored.
Deny patterns always win over allow patterns.
Returns
{%{allow: compiled_patterns, deny: compiled_patterns}, unknown_providers}
Where compiled_patterns is either :all or %{provider => [%Regex{}]},
and unknown_providers is a list of provider keys that were ignored.

 get()

 @spec get() :: map()

Returns normalized configuration map from Application environment.
Reads :llm_db application config and normalizes with defaults.
Configuration Format
config :llm_db,
 allow: :all, # or [:openai, :anthropic] or %{openai: ["gpt-4*"]}
 deny: %{}, # or [:provider] or %{provider: ["pattern"]}
 prefer: [:openai, :anthropic],
 custom: %{
 local: [
 name: "Local Provider",
 base_url: "http://localhost:8080",
 models: %{
 "llama-3" => %{capabilities: %{chat: true}},
 "mistral-7b" => %{capabilities: %{chat: true, tools: %{enabled: true}}}
 }
],
 custom_provider: [
 name: "My Custom Provider",
 models: %{
 "model-1" => %{capabilities: %{chat: true}}
 }
]
 }
Provider keys can be atoms or strings. Patterns support glob syntax with * wildcards.
Custom providers are defined with provider ID as key, and a keyword list containing:
	:name - Provider name (optional)
	:base_url - Base URL for API (optional)
	:models - Map of model ID to model config

Returns
A map with keys:
	:compile_embed - Whether to compile-time embed snapshot (default: false)
	:allow - Allow patterns (:all or %{provider => [patterns]})
	:deny - Deny patterns (%{provider => [patterns]})
	:prefer - List of preferred provider atoms
	:custom - Custom providers map (provider_id => provider_config)

 sources!()

 @spec sources!() :: [{module(), map()}]

Returns the list of sources to load, in precedence order.
These sources provide raw data that will be merged ON TOP of the packaged
base snapshot. The packaged snapshot is always loaded first and is not
included in this sources list.
Configuration
config :llm_db,
 sources: [
 {LLMDB.Sources.ModelsDev, %{}},
 {LLMDB.Sources.Local, %{dir: "priv/llm_db"}}
]
Default Behavior
If not configured, returns an empty list [], meaning only the packaged
snapshot will be used (stable, version-pinned behavior).
Returns
List of {module, opts} tuples in precedence order (first = lowest precedence).

LLMDB.DeepMergeShim

Shim to call DeepMerge.deep_merge/3 with a 3-arity resolver without Dialyzer false positives.
DeepMerge's typespec advertises a 2-arity resolver (any(), any() -> any()) but the actual
runtime implementation calls the resolver with 3 arguments (key, left, right).
This shim hides the call from Dialyzer while providing the correct typespec for our usage.

 Summary

 Types

 resolver3()

 Functions

 deep_merge(left, right, resolver3)

 Types

 resolver3()

 @type resolver3() :: (any(), any(), any() -> any())

 Functions

 deep_merge(left, right, resolver3)

 @spec deep_merge(any(), any(), resolver3()) :: any()

LLMDB.Engine

Pure ETL pipeline for BUILD-TIME LLM model catalog generation.
Engine is a pure function: sources in, snapshot out. It processes ONLY
the sources explicitly passed via options or configured sources.
This module is designed for BUILD-TIME use (e.g., mix tasks) to generate
complete, unfiltered snapshots from remote/local sources that will be
packaged into the library.
Pipeline Stages
	Ingest - Load data from configured sources
	Normalize - Apply normalization to providers and models per layer
	Validate - Validate schemas and log dropped records per layer
	Merge - Combine layers with precedence rules (last wins)
	Finalize - Enrich and nest models under providers
	Ensure viable - Verify catalog has content (warns if empty)

Architecture
Sources are processed in order with last-wins precedence:
	First source (lowest precedence)
	Second source
	... (higher precedence)
	Last source (highest precedence)

The engine coordinates data ingestion, normalization, validation, merging,
and finalization to produce a complete v2 snapshot ready for JSON serialization.
Filtering and indexing are deferred to load-time - the snapshot contains
ALL data from sources. Runtime policies (allow/deny patterns, preferences)
are applied when the snapshot is loaded via LLMDB.load/1.

 Summary

 Functions

 apply_filters(models, map)

 Applies allow/deny filters to models.

 build_nested_providers(providers, models)

 Builds the nested v2 provider structure for snapshot serialization.

 run(opts \\ [])

 Runs the complete ETL pipeline to generate a model catalog snapshot.

 Functions

 apply_filters(models, map)

 @spec apply_filters([map()], map()) :: [map()]

Applies allow/deny filters to models.
Deny patterns always win over allow patterns.
Parameters
	models - List of model maps
	filters - %{allow: compiled_patterns, deny: compiled_patterns}

Returns
Filtered list of models

 build_nested_providers(providers, models)

 @spec build_nested_providers([map()], [map()]) :: %{required(atom()) => map()}

Builds the nested v2 provider structure for snapshot serialization.
Groups models by provider and nests them under their provider.
Models are keyed by model.id for easy lookup.
Parameters
	providers - List of provider maps
	models - List of model maps

Returns
%{atom => %{provider fields + models: %{string => model}}}

 run(opts \\ [])

 @spec run(keyword()) :: {:ok, map()} | {:error, term()}

Runs the complete ETL pipeline to generate a model catalog snapshot.
Pure function that processes sources into a complete, unfiltered snapshot.
BUILD-TIME only.
Options
	:sources - List of {module, opts} source tuples (optional, defaults to Config.sources!())

Note: :allow, :deny, :prefer, and :filters options are ignored.
Filtering is a load-time concern applied via LLMDB.load/1 and runtime config.
Returns
	{:ok, snapshot_map} - Success with v2 snapshot structure
	{:ok, snapshot_map} - Empty catalog (warns but succeeds if no sources)
	{:error, term} - Other error

Snapshot Structure (v2)
%{
 version: 2,
 generated_at: String.t(),
 providers: %{atom => %{provider_fields... + models: %{String.t() => Model.t()}}}
}
The snapshot contains ALL models from all sources. Indexes and filters are
built at load-time by LLMDB.load/1 using the LLMDB.Index module.

LLMDB.Enrich

Lightweight, deterministic enrichment of model data.
This module performs simple derivations and defaults, such as:
	Deriving model family from model ID
	Setting provider_model_id to id if not present
	Ensuring capability defaults are applied (handled by Zoi schemas)

 Summary

 Functions

 derive_family(model_id)

 Derives the family name from a model ID using prefix logic.

 enrich_model(model)

 Enriches a single model map with derived and default values.

 enrich_models(models)

 Enriches a list of model maps.

 Functions

 derive_family(model_id)

 @spec derive_family(String.t()) :: String.t() | nil

Derives the family name from a model ID using prefix logic.
Extracts family from model ID by splitting on "-" and taking all but the last segment.
Returns nil if the family cannot be reasonably derived.
Examples
iex> LLMDB.Enrich.derive_family("gpt-4o-mini")
"gpt-4o"

iex> LLMDB.Enrich.derive_family("claude-3-opus")
"claude-3"

iex> LLMDB.Enrich.derive_family("gemini-1.5-pro")
"gemini-1.5"

iex> LLMDB.Enrich.derive_family("single")
nil

iex> LLMDB.Enrich.derive_family("two-parts")
"two"

 enrich_model(model)

 @spec enrich_model(map()) :: map()

Enriches a single model map with derived and default values.
Sets the following fields if not already present:
	family: Derived from model ID
	provider_model_id: Set to model ID

Note: Capability defaults are handled automatically by Zoi schema validation.
Examples
iex> LLMDB.Enrich.enrich_model(%{id: "gpt-4o-mini", provider: :openai})
%{id: "gpt-4o-mini", provider: :openai, family: "gpt-4o", provider_model_id: "gpt-4o-mini"}

iex> LLMDB.Enrich.enrich_model(%{id: "claude-3-opus", provider: :anthropic, family: "claude-3-custom"})
%{id: "claude-3-opus", provider: :anthropic, family: "claude-3-custom", provider_model_id: "claude-3-opus"}

iex> LLMDB.Enrich.enrich_model(%{id: "model", provider: :openai, provider_model_id: "custom-id"})
%{id: "model", provider: :openai, provider_model_id: "custom-id"}

 enrich_models(models)

 @spec enrich_models([map()]) :: [map()]

Enriches a list of model maps.
Applies enrich_model/1 to each model in the list.
Examples
iex> LLMDB.Enrich.enrich_models([
...> %{id: "gpt-4o", provider: :openai},
...> %{id: "claude-3-opus", provider: :anthropic}
...>])
[
 %{id: "gpt-4o", provider: :openai, family: "gpt", provider_model_id: "gpt-4o"},
 %{id: "claude-3-opus", provider: :anthropic, family: "claude-3", provider_model_id: "claude-3-opus"}
]

LLMDB.Generated.ValidModalities

Auto-generated module containing all valid modality atoms.
This module is generated to prevent atom leaking by ensuring all modality
atoms exist at compile time before String.to_existing_atom/1 is used.
DO NOT EDIT THIS FILE MANUALLY - it will be overwritten.

 Summary

 Functions

 list()

 Returns the list of all valid modality atoms.

 member?(atom)

 Checks if the given atom is a valid modality.

 Functions

 list()

 @spec list() :: [atom()]

Returns the list of all valid modality atoms.

 member?(atom)

 @spec member?(atom()) :: boolean()

Checks if the given atom is a valid modality.

LLMDB.Generated.ValidProviders

Auto-generated module containing all valid provider atoms.
This module is generated by mix llm_db.build to prevent atom leaking.
By pre-generating all provider atoms at build time, we ensure that runtime
code can only use existing atoms via String.to_existing_atom/1.
DO NOT EDIT THIS FILE MANUALLY - it will be overwritten.

 Summary

 Functions

 list()

 Returns the list of all valid provider atoms.

 member?(atom)

 Checks if the given atom is a valid provider.

 Functions

 list()

 @spec list() :: [atom()]

Returns the list of all valid provider atoms.

 member?(atom)

 @spec member?(atom()) :: boolean()

Checks if the given atom is a valid provider.

LLMDB.Loader

Handles loading and merging of packaged snapshots with runtime customization.
Phase 2 of LLMDB: Load the packaged snapshot, apply custom overlays,
compile filters, and build indexes for runtime queries.
This module encapsulates all snapshot loading logic, keeping the main
LLMDB module focused on the query API.

 Summary

 Functions

 compute_digest(providers, base_models, runtime)

 Computes a digest for a snapshot configuration.

 load(opts \\ [])

 Loads the packaged snapshot and applies runtime configuration.

 load_empty(opts \\ [])

 Builds an empty snapshot with no providers or models.

 Functions

 compute_digest(providers, base_models, runtime)

 @spec compute_digest(list(), list(), map()) :: integer()

Computes a digest for a snapshot configuration.
Used to detect if a reload would result in the same snapshot,
enabling idempotent load operations.
Parameters
	providers - List of provider maps
	base_models - List of all models before filtering
	runtime - Runtime configuration map

Returns
Integer digest (phash2 hash)

 load(opts \\ [])

 @spec load(keyword()) :: {:ok, map()} | {:error, term()}

Loads the packaged snapshot and applies runtime configuration.
This is the main entry point for Phase 2 (runtime) loading. It:
	Loads the packaged snapshot
	Normalizes providers/models from v1 or v2 format
	Merges custom providers/models overlay
	Compiles and applies filters
	Builds indexes for O(1) queries
	Returns snapshot ready for Store

Parameters
	opts - Keyword list passed to Runtime.compile/1

Returns
	{:ok, snapshot} - Successfully loaded and prepared snapshot
	{:error, :no_snapshot} - No packaged snapshot available
	{:error, term} - Other errors

Examples
{:ok, snapshot} = Loader.load()

{:ok, snapshot} = Loader.load(
 allow: [:openai],
 custom: %{
 local: [
 models: %{"llama-3" => %{capabilities: %{chat: true}}}
]
 }
)

 load_empty(opts \\ [])

 @spec load_empty(keyword()) :: {:ok, map()}

Builds an empty snapshot with no providers or models.
Used as a fallback when no packaged snapshot is available.
Examples
{:ok, snapshot} = Loader.load_empty()

LLMDB.Merge

Precedence-aware merging with exclude handling for LLM model data.
Provides functions to merge providers, models, and arbitrary maps with
configurable precedence rules. Handles excludes via exact match or glob patterns.

 Summary

 Functions

 compile_excludes(excludes)

 Compiles exclude patterns to regex for performance.

 compile_pattern(pattern)

 Converts a glob pattern to an anchored regex.

 matches_exclude?(model_id, patterns)

 Checks if a model_id matches any exclude pattern.

 merge(base, override, precedence)

 Merges two maps with precedence rules.

 merge_list_by_id(base_list, override_list, id_key \\ :id)

 Merges two lists of maps by a shared ID key.

 merge_models(base_models, override_models, excludes)

 Merges two model lists by {provider, id} identity, applying excludes.

 merge_providers(base_providers, override_providers)

 Merges two provider lists by :id key.

 resolver(opts \\ [])

 Creates a configurable deep merge resolver function.

 Functions

 compile_excludes(excludes)

 @spec compile_excludes(map()) :: map()

Compiles exclude patterns to regex for performance.
Converts a map of %{provider => [patterns]} to %{provider => [compiled_patterns]}
where each pattern is either kept as a string (for exact match) or compiled to regex (for globs).
Examples
iex> result = LLMDB.Merge.compile_excludes(%{openai: ["gpt-3", "gpt-5-*"]})
iex> [exact, pattern] = result.openai
iex> exact
"gpt-3"
iex> Regex.match?(pattern, "gpt-5-pro")
true

 compile_pattern(pattern)

 @spec compile_pattern(String.t()) :: Regex.t()

Converts a glob pattern to an anchored regex.
	"" becomes "."
	Escape other regex special chars
	Anchor with ^ and $

Examples
iex> pattern = LLMDB.Merge.compile_pattern("gpt-*")
iex> Regex.match?(pattern, "gpt-4")
true

iex> pattern = LLMDB.Merge.compile_pattern("gpt-5-*-mini")
iex> Regex.match?(pattern, "gpt-5-turbo-mini")
true

 matches_exclude?(model_id, patterns)

 @spec matches_exclude?(String.t() | nil, [String.t() | Regex.t()]) :: boolean()

Checks if a model_id matches any exclude pattern.
Patterns can be exact strings or compiled regexes.
Examples
iex> LLMDB.Merge.matches_exclude?("gpt-4", ["gpt-3", "gpt-5"])
false

iex> LLMDB.Merge.matches_exclude?("gpt-3", ["gpt-3", "gpt-5"])
true

iex> LLMDB.Merge.matches_exclude?("gpt-5-pro", [~r/^gpt-5-.*$/])
true

iex> LLMDB.Merge.matches_exclude?("gpt-4", [~r/^gpt-5-.*$/])
false

 merge(base, override, precedence)

 @spec merge(map(), map(), :higher | :lower) :: map()

Merges two maps with precedence rules.
	Scalar values: higher precedence wins
	Maps: deep merge recursively
	Lists: concat and de-dup by value
	Higher precedence source always wins on scalars

Examples
iex> LLMDB.Merge.merge(%{a: 1}, %{b: 2}, :higher)
%{a: 1, b: 2}

iex> LLMDB.Merge.merge(%{a: 1}, %{a: 2}, :higher)
%{a: 2}

iex> LLMDB.Merge.merge(%{a: 1}, %{a: 2}, :lower)
%{a: 1}

iex> LLMDB.Merge.merge(%{a: %{b: 1}}, %{a: %{c: 2}}, :higher)
%{a: %{b: 1, c: 2}}

iex> LLMDB.Merge.merge(%{a: [1, 2]}, %{a: [2, 3]}, :higher)
%{a: [1, 2, 3]}

 merge_list_by_id(base_list, override_list, id_key \\ :id)

 @spec merge_list_by_id([map()], [map()], atom() | String.t()) :: [map()]

Merges two lists of maps by a shared ID key.
Keeps the base list order, overrides items with matching IDs from the override list,
and appends override-only items in their original order.
Used by LLMDB.Pricing to merge pricing components from provider defaults
with model-specific overrides.
Parameters
	base_list - The base list of maps (order preserved)
	override_list - Maps that override or extend the base list
	id_key - The key to match on (default: :id). Supports both atom and string keys.

Examples
Override matching items, preserve order
iex> base = [%{id: "a", value: 1}, %{id: "b", value: 2}]
iex> override = [%{id: "b", value: 20}]
iex> LLMDB.Merge.merge_list_by_id(base, override)
[%{id: "a", value: 1}, %{id: "b", value: 20}]

Append new items from override
iex> base = [%{id: "a", value: 1}]
iex> override = [%{id: "b", value: 2}, %{id: "c", value: 3}]
iex> LLMDB.Merge.merge_list_by_id(base, override)
[%{id: "a", value: 1}, %{id: "b", value: 2}, %{id: "c", value: 3}]

Pricing component merge example
iex> defaults = [%{id: "tool.search", rate: 10.0}, %{id: "tool.code", rate: 5.0}]
iex> overrides = [%{id: "tool.search", rate: 0.0}] # Free search
iex> LLMDB.Merge.merge_list_by_id(defaults, overrides)
[%{id: "tool.search", rate: 0.0}, %{id: "tool.code", rate: 5.0}]

 merge_models(base_models, override_models, excludes)

 @spec merge_models([map()], [map()], map()) :: [map()]

Merges two model lists by {provider, id} identity, applying excludes.
	Merge models by {provider, id} identity
	Apply excludes: %{provider_atom => [patterns]} where patterns can be exact strings or globs with *
	Compile glob patterns to regex once for performance
	Higher precedence (override) wins on conflicts

Examples
iex> base = [%{id: "gpt-4", provider: :openai}]
iex> override = [%{id: "gpt-4", provider: :openai, capabilities: %{tools: true}}]
iex> LLMDB.Merge.merge_models(base, override, %{})
[%{id: "gpt-4", provider: :openai, capabilities: %{tools: true}}]

iex> base = [%{id: "gpt-4", provider: :openai}, %{id: "gpt-3", provider: :openai}]
iex> excludes = %{openai: ["gpt-3"]}
iex> LLMDB.Merge.merge_models(base, [], excludes)
[%{id: "gpt-4", provider: :openai}]

iex> base = [%{id: "gpt-4o-mini", provider: :openai}, %{id: "gpt-5-pro", provider: :openai}]
iex> excludes = %{openai: ["gpt-5-*"]}
iex> LLMDB.Merge.merge_models(base, [], excludes)
[%{id: "gpt-4o-mini", provider: :openai}]

 merge_providers(base_providers, override_providers)

 @spec merge_providers([map()], [map()]) :: [map()]

Merges two provider lists by :id key.
Higher precedence (override) wins on conflicts.
Examples
iex> base = [%{id: :openai, name: "OpenAI"}]
iex> override = [%{id: :openai, name: "OpenAI Updated"}, %{id: :anthropic, name: "Anthropic"}]
iex> result = LLMDB.Merge.merge_providers(base, override)
iex> Enum.sort_by(result, & &1.id)
[%{id: :anthropic, name: "Anthropic"}, %{id: :openai, name: "OpenAI Updated"}]

 resolver(opts \\ [])

 @spec resolver(keyword()) :: (any(), any(), any() -> any())

Creates a configurable deep merge resolver function.
Returns a 3-arity function that can be passed to DeepMerge.deep_merge/3
with customizable behavior for list and special key handling.
Options
	:union_list_keys - List of keys whose list values should be unioned (default: [])
	:preserve_empty_list_keys - List of keys where empty list on right preserves left (default: [])

Examples
Model merging with list unions
resolver = Merge.resolver(union_list_keys: [:aliases, :tags])
DeepMerge.deep_merge(base, override, resolver)

Provider merging preserving exclude_models
resolver = Merge.resolver(preserve_empty_list_keys: [:exclude_models])
DeepMerge.deep_merge(base, override, resolver)

LLMDB.Model

Model struct with Zoi schema validation.
Represents an LLM model with complete metadata including identity, provider,
dates, limits, costs, pricing, modalities, capabilities, tags, lifecycle status, and aliases.
Pricing Fields
Models have two pricing-related fields:
	:cost - Legacy simple pricing (per-million-token rates for input/output/cache/reasoning)
	:pricing - Flexible component-based pricing with support for tokens, tools, images, storage

The :cost field is automatically converted to :pricing.components at load time
for backward compatibility. See LLMDB.Pricing and the Pricing and Billing guide.

 Summary

 Types

 t()

 Functions

 new(attrs)

 Creates a new Model struct from a map, validating with Zoi schema.

 new!(attrs)

 Creates a new Model struct from a map, raising on validation errors.

 schema()

 Returns the Zoi schema for Model

 spec(model, format \\ nil)

 Formats a model as a spec string in the given format.

 Types

 t()

 @type t() :: %LLMDB.Model{
 aliases: [binary()],
 base_url: nil | binary(),
 capabilities:
 nil
 | %{
 :tools => %{
 optional(:enabled) => nil | boolean(),
 optional(:strict) => nil | boolean(),
 optional(:parallel) => nil | boolean(),
 optional(:streaming) => nil | boolean(),
 optional(:forced_choice) => nil | boolean()
 },
 :json => %{
 optional(:native) => nil | boolean(),
 optional(:strict) => nil | boolean(),
 optional(:schema) => nil | boolean()
 },
 :reasoning => %{
 optional(:enabled) => nil | boolean(),
 optional(:token_budget) => nil | integer()
 },
 :streaming => %{
 optional(:text) => nil | boolean(),
 optional(:tool_calls) => nil | boolean()
 },
 :chat => boolean(),
 :embeddings =>
 boolean()
 | %{
 optional(:min_dimensions) => nil | integer(),
 optional(:max_dimensions) => nil | integer(),
 optional(:default_dimensions) => nil | integer()
 },
 optional(:caching) => nil | %{optional(:type) => nil | binary()}
 },
 cost:
 nil
 | %{
 optional(:input) => nil | number(),
 optional(:output) => nil | number(),
 optional(:request) => nil | number(),
 optional(:image) => nil | number(),
 optional(:cache_read) => nil | number(),
 optional(:cache_write) => nil | number(),
 optional(:training) => nil | number(),
 optional(:reasoning) => nil | number(),
 optional(:audio) => nil | number(),
 optional(:input_audio) => nil | number(),
 optional(:output_audio) => nil | number(),
 optional(:input_video) => nil | number(),
 optional(:output_video) => nil | number()
 },
 deprecated: boolean(),
 extra: nil | map(),
 family: nil | binary(),
 id: binary(),
 knowledge: nil | binary(),
 last_updated: nil | binary(),
 lifecycle:
 nil
 | %{
 optional(:status) => nil | binary(),
 optional(:replacement) => nil | binary(),
 optional(:deprecated_at) => nil | binary(),
 optional(:retires_at) => nil | binary()
 },
 limits:
 nil
 | %{
 optional(:output) => nil | integer(),
 optional(:context) => nil | integer()
 },
 modalities:
 nil
 | %{optional(:input) => nil | [atom()], optional(:output) => nil | [atom()]},
 model: nil | binary(),
 name: nil | binary(),
 pricing:
 nil
 | %{
 :merge => binary(),
 optional(:currency) => nil | binary(),
 components: [
 %{
 :id => binary(),
 optional(:unit) => nil | binary(),
 optional(:kind) => nil | binary(),
 optional(:tool) => nil | atom() | binary(),
 optional(:per) => nil | integer(),
 optional(:rate) => nil | number(),
 optional(:meter) => nil | binary(),
 optional(:size_class) => nil | binary(),
 optional(:notes) => nil | binary()
 }
]
 },
 provider: atom(),
 provider_model_id: nil | binary(),
 release_date: nil | binary(),
 tags: nil | [binary()]
}

 Functions

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, term()}

Creates a new Model struct from a map, validating with Zoi schema.
Examples
iex> LLMDB.Model.new(%{id: "gpt-4", provider: :openai})
{:ok, %LLMDB.Model{id: "gpt-4", model: "gpt-4", provider: :openai}}

iex> LLMDB.Model.new(%{})
{:error, _validation_errors}

 new!(attrs)

 @spec new!(map()) :: t()

Creates a new Model struct from a map, raising on validation errors.
Examples
iex> LLMDB.Model.new!(%{id: "gpt-4", provider: :openai})
%LLMDB.Model{id: "gpt-4", model: "gpt-4", provider: :openai}

 schema()

Returns the Zoi schema for Model

 spec(model, format \\ nil)

 @spec spec(t(), atom() | nil) :: String.t()

Formats a model as a spec string in the given format.
Delegates to LLMDB.Spec.format_spec/2 with the model's provider and ID.
If no format is specified, uses the application config :llm_db, :model_spec_format
(default: :provider_colon_model).
Parameters
	model - The model struct
	format - Optional format override (:provider_colon_model, :model_at_provider, :filename_safe)

Examples
iex> model = %LLMDB.Model{provider: :openai, id: "gpt-4"}
iex> LLMDB.Model.spec(model)
"openai:gpt-4"

iex> LLMDB.Model.spec(model, :model_at_provider)
"gpt-4@openai"

iex> LLMDB.Model.spec(model, :filename_safe)
"gpt-4@openai"

LLMDB.Normalize

Complete normalization utilities for raw data into consistent formats.
This module handles ALL normalization in one place:
	Provider IDs: string → atom (with hyphen → underscore conversion)
	Model providers: string → atom
	Modalities: string → atom (from valid set)
	Tags: map → list, nil → []
	Dates: DateTime/Date → ISO8601 string
	Removing nil values from maps

Uses String.to_existing_atom/1 at runtime to prevent atom leaking.
Uses String.to_atom/1 ONLY in unsafe mode during build-time (mix tasks).

 Summary

 Functions

 normalize_date(date_string)

 Normalizes a date string to "YYYY-MM-DD" format.

 normalize_model_identity(model, opts \\ [])

 Normalizes a model's identity to a {provider_atom, model_id} tuple.

 normalize_models(models)

 Normalizes a list of model maps.

 normalize_provider_id(provider_id, opts \\ [])

 Normalizes a provider ID to an atom.

 normalize_providers(providers)

 Normalizes a list of provider maps.

 Functions

 normalize_date(date_string)

 @spec normalize_date(String.t() | nil) :: String.t() | nil

Normalizes a date string to "YYYY-MM-DD" format.
Attempts to parse and normalize various date formats. If the date cannot
be normalized, it is returned as-is.
Examples
iex> LLMDB.Normalize.normalize_date("2024-01-15")
"2024-01-15"

iex> LLMDB.Normalize.normalize_date("2024/01/15")
"2024-01-15"

iex> LLMDB.Normalize.normalize_date("invalid-date")
"invalid-date"

iex> LLMDB.Normalize.normalize_date(nil)
nil

 normalize_model_identity(model, opts \\ [])

 @spec normalize_model_identity(
 map(),
 keyword()
) :: {:ok, {atom(), String.t()}} | {:error, term()}

Normalizes a model's identity to a {provider_atom, model_id} tuple.
Extracts the provider (as an atom) and id from a model map.
Examples
iex> LLMDB.Normalize.normalize_model_identity(%{provider: "google-vertex", id: "gemini-pro"})
{:ok, {:google_vertex, "gemini-pro"}}

iex> LLMDB.Normalize.normalize_model_identity(%{provider: :openai, id: "gpt-4"})
{:ok, {:openai, "gpt-4"}}

iex> LLMDB.Normalize.normalize_model_identity(%{provider: "openai"})
{:error, :missing_id}

 normalize_models(models)

 @spec normalize_models([map()]) :: [map()]

Normalizes a list of model maps.
Applies normalize_provider_id to the :provider field and ensures :id is present.
Examples
iex> LLMDB.Normalize.normalize_models([%{provider: "google-vertex", id: "gemini-pro"}])
[%{provider: :google_vertex, id: "gemini-pro"}]

 normalize_provider_id(provider_id, opts \\ [])

 @spec normalize_provider_id(
 binary() | atom(),
 keyword()
) :: {:ok, atom()} | {:error, :bad_provider}

Normalizes a provider ID to an atom.
Converts binary provider IDs to atoms, handling hyphens by converting them
to underscores. Uses String.to_existing_atom/1 to prevent atom leaking
at runtime. During activation task, unsafe conversion is allowed.
Examples
iex> LLMDB.Normalize.normalize_provider_id("google-vertex")
{:ok, :google_vertex}

iex> LLMDB.Normalize.normalize_provider_id(:openai)
{:ok, :openai}

iex> LLMDB.Normalize.normalize_provider_id("maliciousaa")
{:error, :bad_provider}

 normalize_providers(providers)

 @spec normalize_providers([map()]) :: [map()]

Normalizes a list of provider maps.
Applies normalize_provider_id to the :id field of each provider map.
Examples
iex> LLMDB.Normalize.normalize_providers([%{id: "google-vertex"}, %{id: :openai}])
[%{id: :google_vertex}, %{id: :openai}]

LLMDB.Packaged

Provides access to the packaged base snapshot.
This is NOT a Source - it returns the pre-processed, version-stable snapshot
that ships with each release. The snapshot has already been through the full
ETL pipeline (normalize → validate → merge → enrich → filter → index).
Sources (ModelsDev, Local, Config) provide raw data that gets merged ON TOP
of this base snapshot.
Loading Strategy
Behavior controlled by :compile_embed configuration option:
	true - Snapshot embedded at compile-time (zero runtime IO, recommended for production)
	false - Snapshot loaded at runtime from priv directory with integrity checking

Security
Production deployments should use compile_embed: true to eliminate runtime atom
creation and file I/O. Runtime mode includes SHA-256 integrity verification to
prevent tampering with the snapshot file.
Integrity Policy
The :integrity_policy config option controls integrity check behavior:
	:strict (default) - Fail on hash mismatch, treating it as tampering
	:warn - Log warning and continue, useful in dev when snapshot regenerates frequently
	:off - Skip mismatch warnings entirely

In development, use :warn mode. The snapshot file is marked as an @external_resource,
so Mix automatically recompiles the module when it changes, refreshing the hash.

 Summary

 Functions

 manifest_path()

 Returns the absolute path to the packaged manifest file.

 providers_dir()

 Returns the absolute path to the providers directory.

 snapshot()

 Returns the packaged base snapshot (runtime loaded with integrity check).

 Functions

 manifest_path()

 @spec manifest_path() :: String.t()

Returns the absolute path to the packaged manifest file.
Returns
String path to priv/llm_db/manifest.json within the application directory.

 providers_dir()

 @spec providers_dir() :: String.t()

Returns the absolute path to the providers directory.
Returns
String path to priv/llm_db/providers/ within the application directory.

 snapshot()

 @spec snapshot() :: map() | nil

Returns the packaged base snapshot (runtime loaded with integrity check).
This snapshot is the pre-processed output of the ETL pipeline and serves
as the stable foundation for this package version.
Includes SHA-256 integrity verification to prevent tampering.
Returns
Fully indexed snapshot map with providers, models, and indexes, or nil if not available.

LLMDB.Pricing

Pricing pipeline for converting legacy cost data and applying provider defaults.
This module handles two key transformations during snapshot loading:
	Legacy cost conversion - Converts the simple cost map (input/output/cache rates)
into the flexible pricing.components format for backward compatibility.

	Provider defaults - Merges provider-level pricing defaults (e.g., tool pricing)
into each model's pricing, respecting merge strategies.

Pipeline
The pricing transformations run during LLMDB.Loader.load/1:
models
|> Pricing.apply_cost_components() # Convert cost -> pricing.components
|> Pricing.apply_provider_defaults() # Merge provider defaults
Pricing Structure
The pricing field on models contains:
%{
 currency: "USD",
 merge: "merge_by_id", # or "replace"
 components: [
 %{id: "token.input", kind: "token", unit: "token", per: 1_000_000, rate: 3.0},
 %{id: "tool.web_search", kind: "tool", tool: "web_search", unit: "call", per: 1000, rate: 10.0}
]
}
See the Pricing and Billing guide for full documentation.

 Summary

 Functions

 apply_cost_components(models)

 Converts legacy cost fields to pricing.components format.

 apply_provider_defaults(providers, models)

 Applies provider-level pricing defaults to models.

 Functions

 apply_cost_components(models)

 @spec apply_cost_components([LLMDB.Model.t()]) :: [LLMDB.Model.t()]

Converts legacy cost fields to pricing.components format.
For each model with a cost map, generates corresponding pricing components:
	Cost Field	Component ID
	input	token.input
	output	token.output
	cache_read	token.cache_read
	cache_write	token.cache_write
	reasoning	token.reasoning

Existing pricing.components are preserved and take precedence over
generated components (merged by ID).
Examples
iex> models = [%{id: "gpt-4", provider: :openai, cost: %{input: 3.0, output: 15.0}}]
iex> [model] = LLMDB.Pricing.apply_cost_components(models)
iex> model.pricing.components
[
 %{id: "token.input", kind: "token", unit: "token", per: 1_000_000, rate: 3.0},
 %{id: "token.output", kind: "token", unit: "token", per: 1_000_000, rate: 15.0}
]

 apply_provider_defaults(providers, models)

 @spec apply_provider_defaults([LLMDB.Provider.t()], [LLMDB.Model.t()]) :: [
 LLMDB.Model.t()
]

Applies provider-level pricing defaults to models.
For each model, looks up its provider's pricing_defaults and merges them
into the model's pricing field. The merge behavior depends on the model's
pricing.merge setting:
	"merge_by_id" (default) - Provider defaults are merged with model components
by ID. Model components override matching defaults.
	"replace" - Model pricing completely replaces provider defaults.

Models without existing pricing inherit the full provider defaults.
Examples
iex> providers = [%{id: :openai, pricing_defaults: %{
...> currency: "USD",
...> components: [%{id: "tool.web_search", kind: "tool", rate: 10.0}]
...> }}]
iex> models = [%{id: "gpt-4", provider: :openai, pricing: nil}]
iex> [model] = LLMDB.Pricing.apply_provider_defaults(providers, models)
iex> model.pricing.components
[%{id: "tool.web_search", kind: "tool", rate: 10.0}]

LLMDB.Provider

Provider struct with Zoi schema validation.
Represents an LLM provider with metadata including identity, base URL,
environment variables, documentation, and pricing defaults.
Fields
	:id - Unique provider identifier atom (e.g., :openai)
	:name - Display name
	:base_url - Base API URL (supports template variables like {region})
	:env - List of environment variable names for credentials
	:config_schema - Runtime configuration field definitions
	:doc - Documentation URL
	:pricing_defaults - Default pricing components applied to all models (see below)
	:exclude_models - Model IDs to exclude from upstream sources
	:extra - Additional provider-specific data
	:alias_of - Primary provider ID if this is an alias

Pricing Defaults
The :pricing_defaults field defines default pricing for tools and features
that apply to all models from this provider. This avoids duplicating tool
pricing across every model definition.
%{
 currency: "USD",
 components: [
 %{id: "tool.web_search", kind: "tool", tool: "web_search", unit: "call", per: 1000, rate: 10.0},
 %{id: "storage.vectors", kind: "storage", unit: "gb_day", per: 1, rate: 0.10}
]
}
Provider defaults are merged with model-specific pricing at load time.
See LLMDB.Pricing and the Pricing and Billing guide.

 Summary

 Types

 t()

 Functions

 new(attrs)

 Creates a new Provider struct from a map, validating with Zoi schema.

 new!(attrs)

 Creates a new Provider struct from a map, raising on validation errors.

 schema()

 Returns the Zoi schema for Provider

 Types

 t()

 @type t() :: %LLMDB.Provider{
 alias_of: nil | atom(),
 base_url: nil | binary(),
 config_schema:
 nil
 | [
 %{
 optional(:default) => nil | any(),
 :name => binary(),
 :type => binary(),
 optional(:doc) => nil | binary(),
 required: boolean()
 }
],
 doc: nil | binary(),
 env: nil | [binary()],
 exclude_models: nil | [binary()],
 extra: nil | map(),
 id: atom(),
 name: nil | binary(),
 pricing_defaults:
 nil
 | %{
 optional(:currency) => nil | binary(),
 components: [
 %{
 :id => binary(),
 optional(:unit) => nil | binary(),
 optional(:kind) => nil | binary(),
 optional(:tool) => nil | atom() | binary(),
 optional(:per) => nil | integer(),
 optional(:rate) => nil | number(),
 optional(:meter) => nil | binary(),
 optional(:size_class) => nil | binary(),
 optional(:notes) => nil | binary()
 }
]
 }
}

 Functions

 new(attrs)

 @spec new(map()) :: {:ok, t()} | {:error, term()}

Creates a new Provider struct from a map, validating with Zoi schema.
Examples
iex> LLMDB.Provider.new(%{id: :openai, name: "OpenAI"})
{:ok, %LLMDB.Provider{id: :openai, name: "OpenAI"}}

iex> LLMDB.Provider.new(%{})
{:error, _validation_errors}

 new!(attrs)

 @spec new!(map()) :: t()

Creates a new Provider struct from a map, raising on validation errors.
Examples
iex> LLMDB.Provider.new!(%{id: :openai, name: "OpenAI"})
%LLMDB.Provider{id: :openai, name: "OpenAI"}

 schema()

Returns the Zoi schema for Provider

LLMDB.Query

Query functions for selecting models based on capabilities and requirements.
Provides capability-based model selection with provider preferences.
All queries operate on the filtered catalog loaded into the Store.

 Summary

 Types

 model_id()

 model_spec()

 provider()

 Functions

 candidates(opts \\ [])

 Gets all allowed models matching capability requirements.

 capabilities(spec)

 Gets capabilities for a model spec.

 select(opts \\ [])

 Selects the first model matching capability requirements.

 Types

 model_id()

 @type model_id() :: String.t()

 model_spec()

 @type model_spec() :: {provider(), model_id()} | String.t() | LLMDB.Model.t()

 provider()

 @type provider() :: atom()

 Functions

 candidates(opts \\ [])

 @spec candidates(keyword()) :: [{provider(), model_id()}]

Gets all allowed models matching capability requirements.
Returns all models that match the capability filters in preference order.
Similar to select/1 but returns all matches instead of just the first.
Options
	:require - Keyword list of required capabilities (e.g., [tools: true, json_native: true])
	:forbid - Keyword list of forbidden capabilities
	:prefer - List of provider atoms in preference order (e.g., [:openai, :anthropic])
	:scope - Either :all (default) or a specific provider atom

Returns
List of {provider, model_id} tuples matching the criteria, in preference order.
Examples
candidates = Query.candidates(
 require: [chat: true, tools: true],
 prefer: [:openai, :anthropic]
)
#=> [{:openai, "gpt-4o"}, {:openai, "gpt-4o-mini"}, {:anthropic, "claude-3-5-sonnet-20241022"}, ...]

candidates = Query.candidates(
 require: [json_native: true],
 scope: :openai
)
#=> [{:openai, "gpt-4o"}, {:openai, "gpt-4o-mini"}, ...]

 capabilities(spec)

 @spec capabilities(model_spec()) :: map() | nil

Gets capabilities for a model spec.
Returns capabilities map or nil if model not found.
Parameters
	spec - Either {provider, model_id} tuple, "provider:model" string, or %Model{} struct

Examples
caps = Query.capabilities({:openai, "gpt-4o-mini"})
#=> %{chat: true, tools: %{enabled: true, ...}, ...}

caps = Query.capabilities("openai:gpt-4o-mini")
#=> %{chat: true, tools: %{enabled: true, ...}, ...}

{:ok, model} = LLMDB.model("openai:gpt-4o-mini")
caps = Query.capabilities(model)
#=> %{chat: true, tools: %{enabled: true, ...}, ...}

 select(opts \\ [])

 @spec select(keyword()) :: {:ok, {provider(), model_id()}} | {:error, :no_match}

Selects the first model matching capability requirements.
Returns the first allowed model that matches the required capabilities,
in provider preference order.
Options
	:require - Keyword list of required capabilities (e.g., [tools: true, json_native: true])
	:forbid - Keyword list of forbidden capabilities
	:prefer - List of provider atoms in preference order (e.g., [:openai, :anthropic])
	:scope - Either :all (default) or a specific provider atom

Returns
	{:ok, {provider, model_id}} - First matching model
	{:error, :no_match} - No models match the criteria

Examples
{:ok, {provider, model_id}} = Query.select(
 require: [chat: true, tools: true],
 prefer: [:openai, :anthropic]
)

{:ok, {:openai, model_id}} = Query.select(
 require: [json_native: true],
 scope: :openai
)

LLMDB.Runtime

Runtime configuration compilation for consumer applications.
Phase 2 of LLMDB: Compile runtime configuration by merging application
environment config with per-call options, enabling consumers to:
	Filter models by provider/model patterns (allow/deny)
	Define provider preferences
	Add custom providers/models

This module handles the consumer-facing runtime configuration that gets
applied when loading the packaged snapshot into the Store.
Example
Compile runtime config from app env + per-call opts
runtime = LLMDB.Runtime.compile(
 allow: [:openai, :anthropic],
 custom: %{
 providers: [%{id: :myprov, name: "My Provider"}],
 models: [%{provider: :myprov, id: "my-model", capabilities: %{chat: true}}]
 }
)

Runtime config can then be used to filter and customize the catalog

 Summary

 Functions

 apply(snapshot, overrides)

 Applies runtime overrides to an existing snapshot.

 compile(opts \\ [])

 Compiles runtime configuration by merging app env and per-call options.

 Functions

 apply(snapshot, overrides)

 @spec apply(map(), map() | nil) :: {:ok, map()} | {:error, term()}

Applies runtime overrides to an existing snapshot.
Parameters
	snapshot - The current snapshot map
	overrides - Map with optional :filter and :prefer keys

Override Options
	:filter - %{allow: patterns, deny: patterns} to recompile and reapply
	:prefer - List of provider atoms to update preference order

Returns
	{:ok, updated_snapshot} - Success with updated snapshot
	{:error, reason} - Validation or processing error

 compile(opts \\ [])

 @spec compile(keyword()) :: map()

Compiles runtime configuration by merging app env and per-call options.
Merges application environment configuration (from config :llm_db, ...) with
options passed at load time, normalizes the configuration, and compiles filters.
Parameters
	opts - Keyword list of per-call options that override app env:	:allow - :all, list of providers [:openai], or map %{openai: :all | [patterns]}

	:deny - List of providers [:provider] or map %{provider: [patterns]}
	:prefer - List of provider atoms in preference order
	:custom - Map with provider IDs as keys, provider configs (with models) as values
	:provider_ids - Optional list of known provider IDs for validation

Returns
Map with compiled runtime configuration:
	:filters - Compiled allow/deny patterns
	:prefer - Provider preference list
	:custom - Normalized custom providers/models (%{providers: [...], models: [...]})
	:unknown - List of unknown providers in filters (for warnings)

Examples
Simple provider allow list
runtime = Runtime.compile(allow: [:openai, :anthropic])
runtime.filters.allow
#=> %{openai: :all, anthropic: :all}

Provider allow list with model patterns
runtime = Runtime.compile(
 allow: %{openai: ["gpt-4*"], anthropic: :all},
 deny: %{openai: ["gpt-4-0613"]}
)

With custom providers
runtime = Runtime.compile(
 custom: %{
 local: [
 name: "Local Provider",
 models: %{
 "llama-3" => %{capabilities: %{chat: true}}
 }
]
 }
)

LLMDB.Source behaviour

Unified data source interface for LLMDB.
Sources return providers and models data in canonical Zoi format.
No filtering, no excludes. Validation happens later via Engine pipeline.
Output Format: Canonical Zoi v1
All sources MUST return data matching our canonical Zoi schema format.
External formats (e.g., models.dev) must be transformed to canonical format
before returning from load/1.
Type Specifications
	provider_id - Atom or string identifying a provider (e.g., :openai, "anthropic")
	model_id - String identifying a model (e.g., "gpt-4o")
	provider_map - Provider data map with atom keys matching Zoi Provider schema
	model_map - Model data map with atom keys matching Zoi Model schema
	data - Source output with providers map, each containing models list

Contract: Canonical Format Required
All source implementations must return {:ok, data} where data is:
%{
 "openai" => %{
 id: :openai, # REQUIRED: atom or string
 name: "OpenAI", # Optional
 base_url: "...", # Optional
 env: ["OPENAI_API_KEY"], # Optional
 doc: "...", # Optional
 models: [# REQUIRED: list
 %{
 id: "gpt-4o", # REQUIRED: string
 provider: :openai, # REQUIRED: atom
 name: "GPT-4o", # Optional
 limits: %{ # Optional: Zoi Limits schema
 context: 128000,
 output: 16384
 },
 cost: %{ # Optional: Zoi Cost schema
 input: 2.50,
 output: 10.00,
 cache_read: 1.25
 },
 capabilities: %{ # Optional: Zoi Capabilities schema
 streaming: %{text: true},
 tools: %{enabled: true}
 },
 modalities: %{ # Optional
 input: [:text, :image],
 output: [:text]
 },
 ... # Other Zoi Model schema fields
 }
]
 },
 ...
}
Key requirements:
	Outer keys: strings (provider IDs as strings)
	Provider maps: atom keys, MUST include :id (atom/string) and :models (list)
	Model maps: atom keys matching Zoi Model schema

Return {:error, reason} only if the source cannot produce any data.
For partial failures (e.g., one file fails in multi-file source), handle
internally, log warnings, and return available data.
Format Transformation
Sources that read external formats (e.g., models.dev JSON) should implement
a public transform/1 function to make the transformation explicit.
Call this from load/1 before returning.
Example:
def load(opts) do
 case read_external_data(opts) do
 {:ok, external_data} ->
 {:ok, transform(external_data)}
 error ->
 error
 end
end

def transform(external_data) do
 # Transform external format → canonical Zoi format
 ...
end
Testability
Sources should accept optional test hooks via opts parameter:
	:file_reader - Function for reading files (default: File.read!/1)
	:dir_reader - Function for listing directories (default: File.ls!/1)

This allows tests to inject stubs without filesystem access.

 Summary

 Types

 data()

 model_id()

 model_map()

 opts()

 provider_id()

 provider_map()

 pull_result()

 Callbacks

 load(opts)

 Load data from this source.

 pull(opts)

 Pull remote data and cache it locally.

 Functions

 assert_canonical!(data)

 Validates that source data matches the canonical Zoi format.

 Types

 data()

 @type data() :: %{required(String.t()) => provider_map()}

 model_id()

 @type model_id() :: String.t()

 model_map()

 @type model_map() :: map()

 opts()

 @type opts() :: map()

 provider_id()

 @type provider_id() :: atom() | String.t()

 provider_map()

 @type provider_map() :: map()

 pull_result()

 @type pull_result() :: :noop | {:ok, String.t()} | {:error, term()}

 Callbacks

 load(opts)

 @callback load(opts()) :: {:ok, data()} | {:error, term()}

Load data from this source.
For remote sources, this should read from locally cached data (no network calls).
Run mix llm_db.pull to fetch and cache remote data first.
Parameters
	opts - Source-specific options map

Returns
	{:ok, data} - Success with providers/models data
	{:error, term} - Fatal error (source cannot produce any data)

 pull(opts)

 (optional)

 @callback pull(opts()) :: pull_result()

Pull remote data and cache it locally.
This callback is optional and only implemented by sources that fetch remote data.
When implemented, it should:
	Fetch data from a remote endpoint (e.g., via Req)
	Cache the data locally in priv/llm_db/remote/
	Write a manifest file with metadata (URL, checksum, timestamp)
	Support conditional GET using ETag/Last-Modified headers

Parameters
	opts - Source-specific options map (may include :url, :cache_id, etc.)

Returns
	:noop - Data not modified (HTTP 304)
	{:ok, cache_path} - Successfully cached to the given path
	{:error, term} - Failed to fetch or cache

 Functions

 assert_canonical!(data)

 @spec assert_canonical!(data()) :: :ok

Validates that source data matches the canonical Zoi format.
This is a lightweight shape assertion to fail fast if a source
forgets to transform external data. Full schema validation happens
later in the Engine pipeline.
Checks
	Outer structure is a map
	Keys are strings (provider IDs)
	Values are provider maps with atom keys
	Provider maps have required :id and :models fields
	:models is a list

Examples
iex> data = %{"openai" => %{id: :openai, models: []}}
iex> Source.assert_canonical!(data)
:ok

iex> bad_data = %{"openai" => %{"id" => "openai"}}
iex> Source.assert_canonical!(bad_data)
** (ArgumentError) Source.load/1 must return canonical Zoi format

LLMDB.Sources.Anthropic

Remote source for Anthropic models (https://api.anthropic.com/v1/models).
	pull/1 fetches data from Anthropic API and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://api.anthropic.com/v1/models")
	:api_key - Anthropic API key (required, or set ANTHROPIC_API_KEY env var)
	:anthropic_version - API version (default: "2023-06-01")
	:beta - Optional beta versions list
	:limit - Items per page (1-1000, default: 1000 to fetch all)
	:req_opts - Additional Req options for testing

Configuration
Cache directory can be configured in application config:
config :llm_db,
 anthropic_cache_dir: "priv/llm_db/remote"
Default: "priv/llm_db/remote"
Usage
Pull remote data and cache (requires API key)
mix llm_db.pull --source anthropic

Load from cache
{:ok, data} = Anthropic.load(%{})

 Summary

 Functions

 transform(content)

 Transforms Anthropic API response to canonical Zoi format.

 Functions

 transform(content)

Transforms Anthropic API response to canonical Zoi format.
Input Format (Anthropic)
{
 "data": [
 {
 "id": "claude-sonnet-4-20250514",
 "type": "model",
 "display_name": "Claude Sonnet 4",
 "created_at": "2025-02-19T00:00:00Z"
 }
]
}
Output Format (Canonical Zoi)
%{
 "anthropic" => %{
 id: :anthropic,
 name: "Anthropic",
 models: [
 %{
 id: "claude-sonnet-4-20250514",
 provider: :anthropic,
 name: "Claude Sonnet 4",
 extra: %{
 type: "model",
 created_at: "2025-02-19T00:00:00Z"
 }
 }
]
 }
}

LLMDB.Sources.Google

Remote source for Google Gemini models (https://generativelanguage.googleapis.com/v1beta/models).
	pull/1 fetches data from Google Gemini API and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://generativelanguage.googleapis.com/v1beta/models")
	:api_key - Google API key (required, or set GOOGLE_API_KEY or GEMINI_API_KEY env var)
	:page_size - Items per page (1-1000, default: 1000 to fetch all)
	:req_opts - Additional Req options for testing

Configuration
Cache directory can be configured in application config:
config :llm_db,
 google_cache_dir: "priv/llm_db/remote"
Default: "priv/llm_db/remote"
Usage
Pull remote data and cache (requires API key)
mix llm_db.pull --source google

Load from cache
{:ok, data} = Google.load(%{})

 Summary

 Functions

 transform(content)

 Transforms Google Gemini API response to canonical Zoi format.

 Functions

 transform(content)

Transforms Google Gemini API response to canonical Zoi format.
Input Format (Google)
{
 "models": [
 {
 "name": "models/gemini-2.0-flash-exp",
 "baseModelId": "models/gemini-2.0-flash",
 "version": "001",
 "displayName": "Gemini 2.0 Flash",
 "description": "...",
 "inputTokenLimit": 1048576,
 "outputTokenLimit": 8192,
 "supportedGenerationMethods": ["generateContent"],
 "thinking": false
 }
]
}
Output Format (Canonical Zoi)
%{
 "google" => %{
 id: :google,
 name: "Google",
 models: [
 %{
 id: "gemini-2.0-flash-exp",
 provider: :google,
 name: "Gemini 2.0 Flash",
 limits: %{
 context: 1048576,
 output: 8192
 },
 extra: %{
 base_model_id: "models/gemini-2.0-flash",
 version: "001",
 description: "...",
 supported_generation_methods: ["generateContent"],
 thinking: false
 }
 }
]
 }
}

LLMDB.Sources.Local

Loads model metadata from local TOML files in a directory structure.
Directory structure:
priv/llm_db/local/
├── openai/
│ ├── provider.toml # Provider definition
│ ├── gpt-4o.toml # Model
│ └── gpt-4o-mini.toml # Model
├── anthropic/
│ ├── provider.toml
│ └── claude-3-5-sonnet.toml
└── ...
Provider TOML files are always named provider.toml and contain provider metadata.
Model TOML files contain model metadata with provider field linking to provider.
Options
	:dir - Directory path to scan (required)
	:file_reader - Function for reading files (default: &File.read!/1)
	:dir_reader - Function for listing directories (default: &File.ls!/1)

Examples
iex> Local.load(%{dir: "priv/llm_db"})
{:ok, %{"openai" => %{id: :openai, models: [...]}, ...}}
Error Handling
Individual file parse failures are logged and skipped. Returns {:error, :directory_not_found}
if the directory doesn't exist.

LLMDB.Sources.ModelsDev

Remote source for models.dev metadata (https://models.dev/api.json).
	pull/1 fetches data via Req and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://models.dev/api.json")
	:req_opts - Additional Req options for testing (e.g., [plug: test_plug])

Configuration
Cache directory can be configured in application config:
config :llm_db,
 models_dev_cache_dir: "priv/llm_db/remote"
Default: "priv/llm_db/remote"
Usage
Pull remote data and cache
mix llm_db.pull

Load from cache
{:ok, data} = ModelsDev.load(%{})

 Summary

 Functions

 transform(content)

 Transforms models.dev JSON format to canonical Zoi format.

 Functions

 transform(content)

Transforms models.dev JSON format to canonical Zoi format.
Input Format (models.dev)
{
 "provider_id": {
 "id": "provider_id",
 "name": "Provider Name",
 "models": {
 "model_id": {
 "id": "model_id",
 "name": "Model Name",
 "limit": {"context": 128000, "output": 16384},
 "cost": {"input": 2.50, "output": 10.00},
 ...
 }
 }
 }
}
Output Format (Canonical Zoi)
%{
 "provider_id" => %{
 id: :provider_id,
 name: "Provider Name",
 models: [
 %{
 id: "model_id",
 provider: :provider_id,
 name: "Model Name",
 limits: %{context: 128000, output: 16384},
 cost: %{input: 2.50, output: 10.00},
 ...
 }
]
 }
}
Main transformations:
	Convert provider string IDs to atom keys
	Convert models map to models list
	Add provider field to each model
	Transform field names (limit → limits, etc.)
	Atomize known field keys

LLMDB.Sources.OpenAI

Remote source for OpenAI models (https://api.openai.com/v1/models).
	pull/1 fetches data from OpenAI API and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://api.openai.com/v1/models")
	:api_key - OpenAI API key (required, or set OPENAI_API_KEY env var)
	:organization - Optional OpenAI organization ID
	:project - Optional OpenAI project ID
	:req_opts - Additional Req options for testing

Configuration
Cache directory can be configured in application config:
config :llm_db,
 openai_cache_dir: "priv/llm_db/remote"
Default: "priv/llm_db/remote"
Usage
Pull remote data and cache (requires API key)
mix llm_db.pull --source openai

Load from cache
{:ok, data} = OpenAI.load(%{})

 Summary

 Functions

 transform(content)

 Transforms OpenAI API response to canonical Zoi format.

 Functions

 transform(content)

Transforms OpenAI API response to canonical Zoi format.
Input Format (OpenAI)
{
 "object": "list",
 "data": [
 {
 "id": "gpt-4",
 "object": "model",
 "created": 1686935002,
 "owned_by": "openai"
 }
]
}
Output Format (Canonical Zoi)
%{
 "openai" => %{
 id: :openai,
 name: "OpenAI",
 models: [
 %{
 id: "gpt-4",
 provider: :openai,
 extra: %{
 created: 1686935002,
 owned_by: "openai"
 }
 }
]
 }
}

LLMDB.Sources.OpenRouter

Remote source for OpenRouter metadata (https://openrouter.ai/api/v1/models).
	pull/1 fetches data via Req and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://openrouter.ai/api/v1/models")
	:req_opts - Additional Req options for testing (e.g., [plug: test_plug])
	:api_key - OpenRouter API key (optional for public model list)

Configuration
Cache directory can be configured in application config:
config :llm_db,
 openrouter_cache_dir: "priv/llm_db/upstream"
Default: "priv/llm_db/upstream"
Usage
Pull remote data and cache
mix llm_db.pull

Load from cache
{:ok, data} = OpenRouter.load(%{})

 Summary

 Functions

 transform(content)

 Transforms OpenRouter JSON format to canonical Zoi format.

 Functions

 transform(content)

Transforms OpenRouter JSON format to canonical Zoi format.
Input Format (OpenRouter)
{
 "data": [
 {
 "id": "openai/gpt-4",
 "name": "GPT-4",
 "context_length": 128000,
 "pricing": {
 "prompt": "0.00003",
 "completion": "0.00006"
 },
 "architecture": {
 "modality": "text->text",
 "tokenizer": "GPT",
 "instruct_type": "chatml"
 },
 "top_provider": {
 "max_completion_tokens": 16384
 },
 ...
 }
]
}
Output Format (Canonical Zoi)
%{
 "openrouter" => %{
 id: :openrouter,
 name: "OpenRouter",
 models: [
 %{
 id: "openai/gpt-4",
 provider: :openrouter,
 name: "GPT-4",
 limits: %{context: 128000, output: 16384},
 cost: %{input: 0.03, output: 0.06},
 ...
 },
 %{
 id: "perplexity/sonar-pro",
 provider: :openrouter,
 name: "Perplexity: Sonar Pro",
 ...
 }
]
 }
}
Main transformations:
	Keep model IDs exactly as provided by OpenRouter (e.g., perplexity/sonar-pro)
	All models registered under :openrouter provider only
	Transform pricing strings to floats (per 1M tokens)
	Map context_length → limits.context
	Map top_provider.max_completion_tokens → limits.output
	Extract modality information

Provider Separation
OpenRouter models are distinct from native provider models. For example:
	openrouter:perplexity/sonar-pro - accessed via OpenRouter API
	perplexity:sonar-pro - accessed via native Perplexity API (from Perplexity source)

These are separate entries with potentially different pricing, limits, and capabilities.
Model IDs may contain / which is part of the ID string, not a provider delimiter.

LLMDB.Sources.XAI

Remote source for xAI (Grok) models (https://api.x.ai/v1/models).
	pull/1 fetches data from xAI API and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://api.x.ai/v1/models")
	:api_key - xAI API key (required, or set XAI_API_KEY env var)
	:region - Optional regional endpoint (:us_east_1 or :eu_west_1)
	:req_opts - Additional Req options for testing

Configuration
Cache directory can be configured in application config:
config :llm_db,
 xai_cache_dir: "priv/llm_db/remote"
Default: "priv/llm_db/remote"
Regional Endpoints
You can use regional endpoints for data residency:
	:us_east_1 - https://us-east-1.api.x.ai/v1/models
	:eu_west_1 - https://eu-west-1.api.x.ai/v1/models

Usage
Pull remote data and cache (requires API key)
mix llm_db.pull --source xai

Pull with regional endpoint
mix llm_db.pull --source xai --region eu_west_1

Load from cache
{:ok, data} = XAI.load(%{})

 Summary

 Functions

 transform(content)

 Transforms xAI API response to canonical Zoi format.

 Functions

 transform(content)

Transforms xAI API response to canonical Zoi format.
xAI uses OpenAI-compatible format.
Input Format (xAI)
{
 "object": "list",
 "data": [
 {
 "id": "grok-4-fast-reasoning",
 "object": "model",
 "created": 1234567890,
 "owned_by": "xai"
 }
]
}
Output Format (Canonical Zoi)
%{
 "xai" => %{
 id: :xai,
 name: "xAI",
 models: [
 %{
 id: "grok-4-fast-reasoning",
 provider: :xai,
 extra: %{
 created: 1234567890,
 owned_by: "xai"
 }
 }
]
 }
}

LLMDB.Sources.Zenmux

Remote source for Zenmux models (https://zenmux.ai/api/v1/models).
	pull/1 fetches data from Zenmux API and caches locally
	load/1 reads from cached file (no network call)

Options
	:url - API endpoint (default: "https://zenmux.ai/api/v1/models")
	:api_key - Zenmux API key (required, or set ZENMUX_API_KEY env var)
	:req_opts - Additional Req options for testing

Configuration
Cache directory can be configured in application config:
config :llm_db,
 zenmux_cache_dir: "priv/llm_db/remote"
Default: "priv/llm_db/remote"
Usage
Pull remote data and cache (requires API key)
mix llm_db.pull --source zenmux

Load from cache
{:ok, data} = Zenmux.load(%{})

 Summary

 Functions

 transform(content)

 Transforms Zenmux API response to canonical Zoi format.
Zenmux is OpenAI compatible, so the structure mirrors OpenAI's.

 Functions

 transform(content)

Transforms Zenmux API response to canonical Zoi format.
Zenmux is OpenAI compatible, so the structure mirrors OpenAI's.
Input Format (Expected)
{
 "object": "list",
 "data": [
 {
 "id": "gpt-4",
 "object": "model",
 "created": 1686935002,
 "owned_by": "openai"
 }
]
}
Output Format (Canonical Zoi)
%{
 "zenmux" => %{
 id: :zenmux,
 name: "Zenmux",
 models: [
 %{
 id: "gpt-4",
 provider: :zenmux,
 extra: %{
 created: 1686935002,
 owned_by: "openai"
 }
 }
]
 }
}

LLMDB.Spec

Canonical "provider:model" spec parsing and resolution.
This module provides functions to parse and resolve model specifications in various formats,
including "provider:model" strings, "model@provider" strings (filename-safe), tuples,
and bare model IDs with provider scope.
String Formats
Two string formats are supported:
	"provider:model" - Traditional colon separator (default)
	"model@provider" - Email-like format, filesystem-safe for filenames

Both formats parse to the same internal representation and can be used interchangeably.
The @ format is recommended when model specs are used in filenames, CI artifact names,
or other filesystem contexts.
Amazon Bedrock Inference Profiles
For Amazon Bedrock models, inference profile IDs with region prefixes (us., eu., ap., ca., global.)
are supported. The region prefix is stripped for catalog lookup but preserved in the returned
model ID. For example:
iex> LLMDB.Spec.resolve("bedrock:us.anthropic.claude-opus-4-1-20250805-v1:0")
{:ok, {:bedrock, "us.anthropic.claude-opus-4-1-20250805-v1:0", %LLMDB.Model{}}}
The lookup uses "anthropic.claude-opus-4-1-20250805-v1:0" to find metadata, but the returned
model ID retains the "us." prefix for API routing purposes.

 Summary

 Functions

 build_spec(input, opts \\ [])

 Builds a model specification string from various inputs.

 format_spec(arg, format \\ nil)

 Formats a model specification as a string.

 normalize_spec(input)

 Normalizes a model specification to tuple format.

 parse_provider(input)

 Parses and validates a provider identifier.

 parse_spec(input, opts \\ [])

 Parses a model specification string in either "provider:model" or "model@provider" format.

 parse_spec!(input, opts \\ [])

 Parses a model specification string, raising on error.

 resolve(input, opts \\ [])

 Resolves a model specification to a canonical model record.

 Functions

 build_spec(input, opts \\ [])

 @spec build_spec(
 String.t() | {atom(), String.t()},
 keyword()
) :: String.t()

Builds a model specification string from various inputs.
Accepts strings (in any supported format) or tuples and outputs a string
in the desired format.
Parameters
	input - Model spec as string or tuple
	opts - Keyword list with optional :format for output format

Examples
iex> LLMDB.Spec.build_spec("openai:gpt-4", format: :filename_safe)
"gpt-4@openai"

iex> LLMDB.Spec.build_spec({:openai, "gpt-4"}, format: :model_at_provider)
"gpt-4@openai"

 format_spec(arg, format \\ nil)

 @spec format_spec(
 {atom(), String.t()},
 atom() | nil
) :: String.t()

Formats a model specification as a string.
Converts a {provider, model_id} tuple to string format. The output format can be
controlled via the format parameter or falls back to the application config
:llm_db, :model_spec_format (default: :provider_colon_model).
Parameters
	spec - {provider_atom, model_id} tuple
	format - Optional format override (atom)

Supported Formats
	:provider_colon_model - "provider:model" (default)
	:model_at_provider - "model@provider" (filename-safe)
	:filename_safe - alias for :model_at_provider

Examples
iex> LLMDB.Spec.format_spec({:openai, "gpt-4"})
"openai:gpt-4"

iex> LLMDB.Spec.format_spec({:openai, "gpt-4"}, :model_at_provider)
"gpt-4@openai"

iex> LLMDB.Spec.format_spec({:openai, "gpt-4o-mini"}, :filename_safe)
"gpt-4o-mini@openai"

 normalize_spec(input)

 @spec normalize_spec(String.t() | {atom(), String.t()}) :: {atom(), String.t()}

Normalizes a model specification to tuple format.
Accepts either a string (in any supported format) or a tuple and returns
a normalized {provider, model_id} tuple.
Examples
iex> LLMDB.Spec.normalize_spec("openai:gpt-4")
{:openai, "gpt-4"}

iex> LLMDB.Spec.normalize_spec("gpt-4@openai")
{:openai, "gpt-4"}

iex> LLMDB.Spec.normalize_spec({:openai, "gpt-4"})
{:openai, "gpt-4"}

 parse_provider(input)

 @spec parse_provider(atom() | binary()) ::
 {:ok, atom()} | {:error, :unknown_provider | :bad_provider}

Parses and validates a provider identifier.
Accepts atom or binary input, normalizes to atom, and verifies the provider
exists in the current catalog.
Parameters
	input - Provider identifier as atom or binary

Returns
	{:ok, atom} - Normalized provider atom if valid and exists in catalog
	{:error, :unknown_provider} - Provider not found in catalog
	{:error, :bad_provider} - Invalid provider format

Examples
iex> LLMDB.Spec.parse_provider(:openai)
{:ok, :openai}

iex> LLMDB.Spec.parse_provider("google-vertex")
{:ok, :google_vertex}

iex> LLMDB.Spec.parse_provider("nonexistent")
{:error, :unknown_provider}

 parse_spec(input, opts \\ [])

 @spec parse_spec(
 String.t() | {atom(), String.t()},
 keyword()
) ::
 {:ok, {atom(), String.t()}}
 | {:error,
 :invalid_format
 | :ambiguous_format
 | :unknown_provider
 | :bad_provider
 | :invalid_chars
 | :empty_segment}

Parses a model specification string in either "provider:model" or "model@provider" format.
Automatically detects the format based on separators present. Validates the provider
exists in the catalog and checks for reserved characters in segments.
Parameters
	spec - String in "provider:model" or "model@provider" format, or {provider, model_id} tuple
	opts - Keyword list with optional :format to explicitly specify format

Options
	:format - Explicitly specify the format as :colon or :at. Required when both separators present.

Returns
	{:ok, {provider_atom, model_id}} - Parsed and normalized spec
	{:error, :invalid_format} - No valid separator found
	{:error, :ambiguous_format} - Both separators present without explicit format
	{:error, :unknown_provider} - Provider not found in catalog
	{:error, :bad_provider} - Invalid provider format
	{:error, :invalid_chars} - Reserved characters in provider or model segments
	{:error, :empty_segment} - Provider or model segment is empty

Examples
iex> LLMDB.Spec.parse_spec("openai:gpt-4")
{:ok, {:openai, "gpt-4"}}

iex> LLMDB.Spec.parse_spec("gpt-4@openai")
{:ok, {:openai, "gpt-4"}}

iex> LLMDB.Spec.parse_spec("google-vertex:gemini-pro")
{:ok, {:google_vertex, "gemini-pro"}}

iex> LLMDB.Spec.parse_spec("provider:model@ambiguous", format: :colon)
{:ok, {:provider, "model@ambiguous"}}

iex> LLMDB.Spec.parse_spec("gpt-4")
{:error, :invalid_format}

 parse_spec!(input, opts \\ [])

 @spec parse_spec!(
 String.t() | {atom(), String.t()},
 keyword()
) :: {atom(), String.t()}

Parses a model specification string, raising on error.
Same as parse_spec/2 but raises ArgumentError instead of returning error tuple.
Examples
iex> LLMDB.Spec.parse_spec!("openai:gpt-4")
{:openai, "gpt-4"}

iex> LLMDB.Spec.parse_spec!("gpt-4@openai")
{:openai, "gpt-4"}

 resolve(input, opts \\ [])

 @spec resolve(
 String.t() | {atom(), String.t()},
 keyword()
) :: {:ok, {atom(), String.t(), LLMDB.Model.t()}} | {:error, term()}

Resolves a model specification to a canonical model record.
Accepts multiple input formats:
	"provider:model" string
	{provider, model_id} tuple
	Bare "model" string with opts[:scope] = provider_atom

Handles alias resolution and validates the model exists in the catalog.
Parameters
	input - Model specification in one of the supported formats
	opts - Keyword list with optional :scope for bare model resolution

Returns
	{:ok, {provider, canonical_id, Model.t()}} - Resolved model
	{:error, :not_found} - Model doesn't exist
	{:error, :ambiguous} - Bare model ID exists under multiple providers without scope
	{:error, :invalid_format} - Malformed input
	{:error, term} - Other parsing errors

Examples
iex> LLMDB.Spec.resolve("openai:gpt-4")
{:ok, {:openai, "gpt-4", %LLMDB.Model{}}}

iex> LLMDB.Spec.resolve({:openai, "gpt-4"})
{:ok, {:openai, "gpt-4", %LLMDB.Model{}}}

iex> LLMDB.Spec.resolve("gpt-4", scope: :openai)
{:ok, {:openai, "gpt-4", %LLMDB.Model{}}}

iex> LLMDB.Spec.resolve("gpt-4")
{:error, :ambiguous}

LLMDB.Store

Manages persistent_term storage for LLM model snapshots with atomic swaps.
Uses :persistent_term for fast, concurrent reads with atomic updates tracked by monotonic epochs.

 Summary

 Functions

 clear!()

 Clears the persistent_term store.

 epoch()

 Returns the current epoch from the store.

 get()

 Reads the full store from persistent_term.

 last_opts()

 Returns the last load options from the store.

 model(provider_id, model_id)

 Returns a specific model by provider and ID.

 models(provider_id)

 Returns all models for a specific provider.

 provider(provider_id)

 Returns a specific provider by ID.

 providers()

 Returns all providers from the snapshot.

 put!(snapshot, opts)

 Atomically swaps the store with new snapshot and options.

 snapshot()

 Returns the snapshot portion from the store.

 Functions

 clear!()

 @spec clear!() :: :ok

Clears the persistent_term store.
Primarily used for testing cleanup.
Returns
:ok

 epoch()

 @spec epoch() :: non_neg_integer()

Returns the current epoch from the store.
Returns
Non-negative integer representing the current epoch, or 0 if not set.

 get()

 @spec get() :: map() | nil

Reads the full store from persistent_term.
Returns
Map with :snapshot, :epoch, and :opts keys, or nil if not set.

 last_opts()

 @spec last_opts() :: keyword()

Returns the last load options from the store.
Returns
Keyword list of options used in the last load, or [] if not set.

 model(provider_id, model_id)

 @spec model(atom(), String.t()) :: {:ok, LLMDB.Model.t()} | {:error, :not_found}

Returns a specific model by provider and ID.
Resolves both model aliases and provider aliases. For example, looking up
model(:google_vertex, "claude-haiku-4-5@20251001") will find the model
even if it's stored under :google_vertex_anthropic provider (via alias_of).
Parameters
	provider_id - Provider atom
	model_id - Model ID string (can be an alias)

Returns
	{:ok, model} - Model found
	{:error, :not_found} - Model not found

 models(provider_id)

 @spec models(atom()) :: [LLMDB.Model.t()]

Returns all models for a specific provider.
Includes models from aliased providers. For example, calling models(:google_vertex)
will return models from both :google_vertex AND :google_vertex_anthropic since
google_vertex_anthropic has alias_of: :google_vertex.
Parameters
	provider_id - Provider atom

Returns
List of Model structs for the provider and its aliases, or empty list if provider not found.

 provider(provider_id)

 @spec provider(atom()) :: {:ok, LLMDB.Provider.t()} | {:error, :not_found}

Returns a specific provider by ID.
Parameters
	provider_id - Provider atom

Returns
	{:ok, provider} - Provider found
	{:error, :not_found} - Provider not found

 providers()

 @spec providers() :: [LLMDB.Provider.t()]

Returns all providers from the snapshot.
Returns
List of Provider structs, or empty list if no snapshot.

 put!(snapshot, opts)

 @spec put!(
 map(),
 keyword()
) :: :ok

Atomically swaps the store with new snapshot and options.
Creates a new epoch using a monotonic unique integer and stores the complete state.
Parameters
	snapshot - The snapshot map to store
	opts - Keyword list of options to store

Returns
:ok

 snapshot()

 @spec snapshot() :: map() | nil

Returns the snapshot portion from the store.
Returns
The snapshot map or nil if not set.

LLMDB.Validate

Validation functions for providers and models using Zoi schemas.
Provides functions to validate individual records or batches of records,
handling errors gracefully and ensuring catalog viability.

 Summary

 Types

 validation_error()

 Functions

 ensure_viable(providers, models)

 Ensures that we have at least one provider and one model for a viable catalog.

 validate_model(map)

 Validates a single model map against the Model schema.

 validate_models(maps)

 Validates a list of model maps, collecting valid ones and counting invalid.

 validate_provider(map)

 Validates a single provider map against the Provider schema.

 validate_providers(maps)

 Validates a list of provider maps, collecting valid ones and counting invalid.

 Types

 validation_error()

 @type validation_error() :: term()

 Functions

 ensure_viable(providers, models)

 @spec ensure_viable([LLMDB.Provider.t()], [LLMDB.Model.t()]) ::
 :ok | {:error, :empty_catalog}

Ensures that we have at least one provider and one model for a viable catalog.
Returns :ok if both lists are non-empty, otherwise returns an error.
Examples
iex> ensure_viable([%{id: :openai}], [%{id: "gpt-4o", provider: :openai}])
:ok

iex> ensure_viable([], [%{id: "gpt-4o", provider: :openai}])
{:error, :empty_catalog}

iex> ensure_viable([%{id: :openai}], [])
{:error, :empty_catalog}

 validate_model(map)

 @spec validate_model(map()) :: {:ok, LLMDB.Model.t()} | {:error, validation_error()}

Validates a single model map against the Model schema.
Examples
iex> validate_model(%{id: "gpt-4o", provider: :openai})
{:ok, %{id: "gpt-4o", provider: :openai, deprecated: false, aliases: []}}

iex> validate_model(%{id: "gpt-4o"})
{:error, _}

 validate_models(maps)

 @spec validate_models([map()]) :: {:ok, [LLMDB.Model.t()], non_neg_integer()}

Validates a list of model maps, collecting valid ones and counting invalid.
Returns all valid models and the count of invalid ones that were dropped.
Examples
iex> models = [
...> %{id: "gpt-4o", provider: :openai},
...> %{id: :invalid, provider: :openai},
...> %{id: "claude-3", provider: :anthropic}
...>]
iex> validate_models(models)
{:ok, [%{id: "gpt-4o", ...}, %{id: "claude-3", ...}], 1}

 validate_provider(map)

 @spec validate_provider(map()) ::
 {:ok, LLMDB.Provider.t()} | {:error, validation_error()}

Validates a single provider map against the Provider schema.
Examples
iex> validate_provider(%{id: :openai})
{:ok, %{id: :openai}}

iex> validate_provider(%{id: "openai"})
{:error, _}

 validate_providers(maps)

 @spec validate_providers([map()]) :: {:ok, [LLMDB.Provider.t()], non_neg_integer()}

Validates a list of provider maps, collecting valid ones and counting invalid.
Returns all valid providers and the count of invalid ones that were dropped.
Examples
iex> providers = [%{id: :openai}, %{id: "invalid"}, %{id: :anthropic}]
iex> validate_providers(providers)
{:ok, [%{id: :openai}, %{id: :anthropic}], 1}

mix llm_db.build

Builds snapshot.json from configured sources using the Engine ETL pipeline.
Runs the complete ETL pipeline (Ingest → Normalize → Validate → Merge →
Enrich → Filter → Index) on configured sources to generate a fresh
snapshot.json file.
Usage
mix llm_db.build
Configuration
Configure sources in your application config:
config :llm_db,
 sources: [
 {LLMDB.Sources.Packaged, %{}},
 {LLMDB.Sources.ModelsDev, %{url: "https://models.dev/api.json"}},
 {LLMDB.Sources.JSONFile, %{paths: ["priv/custom.json"]}}
],
 allow: :all,
 deny: %{},
 prefer: [:openai, :anthropic]

mix llm_db.models

Lists all models from the LLMDB catalog with lifecycle status and aliases.
Usage
mix llmdb.models # List all models
mix llmdb.models "anthropic:*" # List all Anthropic models
mix llmdb.models "openai:gpt-4o" # List specific model
mix llmdb.models "*:*" # List all models (explicit)
Model Specs
Supports glob-style filtering:
	provider:* - All models for a provider (e.g., "anthropic:*")
	provider:pattern - Specific model or pattern (e.g., "openai:gpt-4*")
	: - All models across all providers

Aliases are automatically resolved to canonical model IDs.
Output Format
Models are grouped by provider with lifecycle indicators:
	✓ (green) - Active model
	⚠ (yellow) - Deprecated model with retirement date
	❌ (red) - Retired model

Each model shows its canonical ID, aliases (if any), lifecycle status,
retirement date, and replacement model (if applicable).
Examples
List all Anthropic models
mix llmdb.models "anthropic:*"

List all OpenAI GPT-4 models
mix llmdb.models "openai:gpt-4*"

List specific model by alias
mix llmdb.models "anthropic:claude-3.5-haiku"

List all models
mix llmdb.models

mix llm_db.pull

Pulls latest model metadata from all configured remote sources and caches locally.
This task iterates through all sources configured in Config.sources!() and calls
their optional pull/1 callback (if implemented). Sources without a pull/1 callback
are skipped. Fetched data is saved to cache directories (typically priv/llm_db/upstream/
or priv/llm_db/remote/).
To build the final snapshot and generate the ValidProviders module from fetched data,
run mix llm_db.build.
Usage
mix llm_db.pull
mix llm_db.pull --source openai
mix llm_db.pull --source anthropic
Switches
	--source - Pull from a specific source only (openai, anthropic, google, xai, models_dev)

Configuration
Configure sources in your application config:
config :llm_db,
 sources: [
 {LLMDB.Sources.ModelsDev, %{}},
 {LLMDB.Sources.Local, %{dir: "priv/llm_db"}}
]
Only sources that implement the optional pull/1 callback will be pulled.
Typically only remote sources like ModelsDev implement this callback.
Examples
Pull from all configured remote sources
mix llm_db.pull

Pull from OpenAI only
mix llm_db.pull --source openai
Output
The task prints a summary of pull results:
Pulling from configured sources...

✓ LLMDB.Sources.ModelsDev: Updated (709.2 KB)
○ LLMDB.Sources.OpenRouter: Not modified
- LLMDB.Sources.Local: No pull callback (skipped)

Summary: 1 updated, 1 unchanged, 1 skipped, 0 failed

Run 'mix llm_db.build' to generate snapshot.json and valid_providers.ex

mix llm_db.version

Updates the version in mix.exs to CalVer format (YYYY.M.PATCH).
	If current version is from a different month, resets to YYYY.M.0
	If current version is from the same month, increments PATCH

Usage
mix llm_db.version
Examples
Current: 2025.11.5, Today: December 2025
Result: 2025.12.0

Current: 2025.12.0, Today: December 2025
Result: 2025.12.1

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

